
Refined Levenshtein

Yi Lu

November 2023

Contents

1 Introduction 2

2 Implementation 2
2.1 Original Levenshtein function . . . . . . . . . . . . . . . . . . . . 2
2.2 Implementation for refined Levenshtein function . . . . . . . . . 3

3 Analysis 3
3.1 Space complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1



0 1 2 ...
1 0 0 ...
2 0 0 ...
...

...
...

. . .

Table 1: dp initialiaztion

1 Introduction

An algorithm based on the Levenshtein distance function that can determine
whether one string can be edited into another of equal length with a given
number of edits. The Levenshtein distance function algorithm is implemented
based on dynamic programming. If we want to calculate whether it’s possible
to reach the other string with a specified number of substitutions, insertions,
and deletions, we just need to store the edit history at each position in the
matrix. However, if implemented as such, it may result in a lot of redundant
computations, and it may not be conducive to GPU implementation. Therefore,
I propose a static type of implementation to address this issue.

This function is used in [1]. And we can obtain a code table with 90 score
of compatibility and lower code rate (1 : 5) compared with (1 : 6).

2 Implementation

2.1 Original Levenshtein function

If we denote s1 and s2 as two different strings, the original function is used to
calculate their edit distance as following relationship [2]:

lev(s1, s2) =



len(s1) if len(s2) == 0

len(s2) if len(s1) == 0

lev(s1[1 :], s2[1 :]) if s1[0] == s2[0]

1 +min


lev(s1[1 :], s2)

lev(s1, s2[1 :])

lev(s1[1 :], s2[1 :])

otherwise

.

If we denote dp as the corresponding dynamic programming matrix and n
as the length of these two strings, the shape of dp is

(n+ 1)× (n+ 1).

Additionally, the first row and the first column need to be initialized as table1
to represent the number of insertions and deletions required to transform an
empty string to the respective positions i and j,

2



Then for i-rows and j-columns, we can repeat following update function

dp[i][j] =


dp[i− 1][j − 1] , if s1[i] == s2[j].

1 +min


dp[i− 1][j]

dp[i][j − 1]

dp[i− 1][j − 1]

, otherwise.

The final result is dp[n− 1][n− 1].

2.2 Implementation for refined Levenshtein function

Here is the implementation of Python [3].
If we denote the substitution limit as ns and the insertion or deletion limit as

nindel (since in the case of comparing equal-length strings, insertion is equivalent
to deletion). We denote dynamic matrix as rdp. Therefore, the maximum
possible value for all edit records is

R = (ns + 1)× (nindel + 1)2.

We use a ternary tuple to store the counts of substitutions, insertions, and
deletions in the following order:

rdp[i][j][k] = (Sijk, Iijk, Dijk), 0 ≤ Sijk ≤ ns, 0 ≤ Iijk, Dijk ≤ nindel.

Encode this tuple through a one-to-one mapping into an index,

dk = Dijk + nindel × Iijk + n2
indel × Sijk ↔ rdp[i][j][k].

To save memory, here, we useK = ⌈R
8 ⌉ bits of int8 data to record all possible

edit records for the current step. So the shape of rdp is

(n+ 1)× (n+ 1)×K.

A k-th numerical representation, where each bit corresponds to the presence (1)
or absence (0) of the corresponding edit record.

For updating the dynamic programming matrix, we only need to iterate over
k (We next focus on s1[i]! = s2[j]). By using the edit records corresponding to
k, we can deduce whether the truth values at the respective positions can be
obtained through one step of the corresponding edit. Specifically, suppose the
tuple corresponding to k is (a, b, c), we only need to affirm index ks responding
to (a−1, b, c) in rdp[i−1][j−1], index ki responding to (a, b−1, c) in rdp[i][j−1]
or index kd responding to (a, b, c− 1) in rdp[i− 1][j] is 1 or not. If there exists
1 then let rdp[i][j][k] = 1 else we don’t change anything.

3 Analysis

3.1 Space complexity

Although we mentioned using a dynamic programming matrix to implement
the entire algorithm earlier, we did not fully utilize all positions in the matrix.

3



Considering that the dynamic programming is at most related to the previous
two steps, and each step only needs to consider the number of insertions and
deletions, the minimum required storage space can be calculated as:

[3× (2× nindel + 1)]×K ∼ O(ns · (nindel)
3).

We should notice that ns, nindel can’t be larger than n.

3.2 Time complexity

Regarding time complexity, we only provide an upper bound estimate for coor-
dinates that contribute to effective computation. The actual number of coordi-
nates that are computed is:

n× (2× nindel + 1).

The loop iterations required for each coordinate are:

3×R.

Overall, the maximum complexity is:

3× n×R× (2× nindel + 1) ∼ O(ns · (nindel)
2 · n).

Whether in terms of time complexity or space complexity, it may seem that
nindel is high. However, in practical use,nindel is often considered to be a small
constant value, while n is large. This implies that the upper bound of the
reachability algorithm is O(n).

References

[1] The Mammoth International Contest On OMICS Sciences. https://

micos.cngb.org/zh-hans/

[2] Levenshtein distance. https://en.wikipedia.org/wiki/Levenshtein_

distance

[3] Code for refined Levenshtein function. https://github.com/ylu1997/

ylu1997.github.io/blob/main/Only3000/Refined_Levenshtein.py

4


